Canopy phenology of a dry forest in western Brazil.

نویسندگان

  • J Ragusa-Netto
  • R R Silva
چکیده

Dry forests are common, although highly threatened in the Neotropics. Their ecological processes are mostly influenced by rainfall pattern, hence their cycles exhibit contrasting phases. We studied the phenology of canopy trees in a primary dry forest in Western Brazil in the foothills of the Urucum mountain chain, in order to improve our knowledge on the functioning of these poorly-known forests. Leaf shedding started in the early dry season and was massive in the latter part of this period. Most leaf loss occurred in dry hills, while wet valleys remained evergreen. Anemochorich and autochorich species predominated in dry hills, presumably due to their tolerance to dry conditions and enhanced exposition to winds, which favour diaspores removal and dispersal. Conversely, zoochorich species dominated the wet valleys. Flowering was intense in the late dry season, the driest period of the year, while fruiting was massive just after the onset of rains, as well as flushing. Therefore, most flowering was unrelated to wet conditions, although such an abiotic factor, potentially, triggered the major fruiting episode, widely comprised by zoochorich species. Anemochorich and autochorich species flowered and fruited in the course of the long dry season. The contrasting environmental conditions present in the hills and valleys determine the arrangement of a mosaic in which patches of zoochorich and evergreen trees alternate with patches of non zoochorich and highly deciduous species. Consequently, species with such syndromes exhibited marked flowering and fruiting patterns, accordingly to the pronounced seasonality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal carbon dynamics and water fluxes in an Amazon rainforest

Satellite-based observations indicate that seasonal patterns in canopy greenness and productivity in the Amazon are negatively correlated with precipitation, with increased greenness occurring during the dry months. Flux tower measurements indicate that the canopy greening that occurs during the dry season is associated with increases in net ecosystem productivity (NEP) and evapotranspiration (...

متن کامل

Figs and the Persistence of Toco Toucan (ramphastos Toco) at Dry Forests from Western Brazil

– The Toco Toucan (Ramphastos toco) is a large canopy frugivore common in the seasonal areas of the interior of Brazil. In this study, I evaluated fruit production and analyzed the toucan’s feeding habits in two types of dry forests, one deciduous, although rich in figs, and another semi-deciduous, both in the western Brazil. Both areas exhibited marked fruiting patterns, which peaks overlapped...

متن کامل

Amazon rainforests green-up with sunlight in dry season

[1] Metabolism and phenology of Amazon rainforests significantly influence global dynamics of climate, carbon and water, but remain poorly understood. We analyzed Amazon vegetation phenology at multiple scales with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements from 2000 to 2005. MODIS Enhanced Vegetation Index (EVI, an index of canopy photosynthetic capacity) incr...

متن کامل

Canopy Structure on Forest Lands in Western Oregon: Differences Amond Forest Types and Stand Ages

McIntosh, Anne C.S.; Gray, Andrew N.; Garman, Steven L. 2009. Canopy structure on forest lands in western Oregon: differences among forest types and stand ages. Gen. Tech. Rep. PNW-GTR-794. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 35 p. Canopy structure is an important attribute affecting economic and ecological values of forests in the P...

متن کامل

Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability

Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brazilian journal of biology = Revista brasleira de biologia

دوره 67 3  شماره 

صفحات  -

تاریخ انتشار 2007